sábado, 1 de agosto de 2009

¿Puede un puente estar en dos lugares a la vez?


Físicos del Caltech diseñan un método para detectar efectos mecanocuánticos en objetos ordinarios. Los resultados han aparecido publicados en Nature.

Desde el nivel de la existencia humana hasta la nanoescala, estamos gobernados por las leyes de Newton. Sueltas algo desde una altura y, si no hay nada que lo evite, cae al suelo; empujas algo con suficiente fuerza y se mueve. A nivel atómico, estas reglas dejan de aplicarse: las partículas atómicas pueden existir en dos estados al mismo tiempo, mantienen conexiones con partículas hermanas a kilómetros de distancia, y pasan a través de superficies por unos túneles que antes no estaban allí. Las reglas que rigen lo atómico, la física cuántica, son especialmente extrañas para nosotros porque, si bien estamos hechos de átomos, no parece que tengamos estas propiedades. ¿Cómo podríamos averiguar si cualquier colección de átomos (un teclado, mi dedo, esa mesa) tiene las mismas propiedades que los átomos que la constituyen?

Esta cuestión nos ha perseguido desde el descubrimiento de la mecánica cuántica. El problema siempre ha sido encontrar una manera de medir los efectos cuánticos más allá de la escala atómica, lo que nos permitiría ver a qué tamaño la mecánica cuántica da paso a la clásica, o si las propiedades cuánticas se las arreglan de alguna manera para persistir hasta la escala humana. El físico vienés Antón Zeilinger, en experimentos pioneros realizados en 1999 [1], encontró que moléculas tan grandes como las buckyesferas (fulereno esférico, 60 átomos de carbono) presentan la dualidad onda-corpúsculo de las partículas atómicas. Desde entonces los físicos han intentado ver quién observa el objeto más grande con efectos cuánticos (como ejemplo, El universo cuántico se amplía: entrelazamiento entre osciladores mecánicos.).

Ahora, un equipo del Instituto de Tecnología de California – Caltech (EE.UU.), en un trabajo cuyo autor principal es Matt LaHaye, ha construido una estructura en miniatura (2 micras de longitud, 0,2 micras de ancho) que puede detectar si un objeto hecho de diez mil millones de átomos presenta propiedades cuánticas, en concreto, si presenta estados energéticos cuantizados. A escala humana, los objetos que oscilan, como un péndulo, tienen una curva de energía continua, van del 100 por ciento del valor posible de energía a cero y a la inversa. Pero los átomos oscilan entre estados energéticos definidos; así, por ejemplo, un átomo podría tener 100 por cien de energía o cero, pero ningún otro valor intermedio. La energía varía en paquetes indivisibles llamados cuantos y por eso decimos que la energía está cuantizada.

Keith Schwab, uno de los coautores del estudio, propuso hace algunos años que si los osciladores mayores que los átomos tenían también niveles de energía cuantizados, se debería poder detectarlos diseñando una interacción con un sistema “equivalente a un átomo”. En otras palabras, fijándonos en cómo cambian los niveles de energía de un átomo cuando se acopla con un oscilador, podríamos deducir los niveles cuánticos de energía del oscilador. Esto es lo que han construido Schwab, LaHaye y sus colegas.

En un chip de silicona, han conseguido colocar muy próximos (300 nanometros) un puente de aluminio a nanoescala y una isla superconductora, una caja de un par de Cooper, que actúa como una “partícula atómica” artificial [en la imagen, el puente es lo que parece un puente y la caja del par de Cooper el depósito en el borde a su izquierda]. Esta “partícula atómica” puede tomar uno de dos estados posibles; la información que representa este hecho es la versión cuántica de los bits binarios de un ordenador, lo que se conoce como qubit. El puente, hecho de 10 mil millones de átomos, vibra cuando se le aplica una corriente, mientras que la “partícula atómica” salta entre sus niveles de energía. Ambos dispositivos generan campos electromagnéticos que interactúan entre sí, lo que permitiría deducir el estado de uno en función del estado del otro.

El primer ensayo de los investigadores, publicado en Nature [2], es una prueba de concepto: Si se puede deducir el estado cuántico de la “partícula atómica” a partir de las vibraciones del puente, sería posible lo contrario, y usar las vibraciones de la “partícula atómica” para medir los posibles estados cuánticos del puente. Y eso es precisamente lo que han encontrado, las firmas de los estados cuánticos de la “partícula atómica” en las lecturas del puente, tan claras como el día.

Con mejoras en su técnica, los investigadores esperan poder explorar los cuantos del puente procedentes de la influencia de la “partícula atómica”. Si encuentran efectos cuánticos en el puente, sería el objeto más grande que los mostrase, un logro importante. Y, a partir de ahí, los experimentos futuros no podrían ser más excitantes. Por ejemplo, ¿tendría el puente superposición cuántica, existir en dos lugares a la vez?

Si se observan efectos cuánticos a nanoescala, que son objetos macroscópicos después de todo, ello sería signo de que nos hace falta una comprensión más profunda y fundamental de cómo está constituido el universo.

Referencias:

[1]

Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Wave–particle duality of C60 molecules Nature, 401 (6754), 680-682 DOI: 10.1038/44348

[2]


LaHaye, M., Suh, J., Echternach, P., Schwab, K., & Roukes, M. (2009). Nanomechanical measurements of a superconducting qubit Nature, 459 (7249), 960-964 DOI: 10.1038/nature08093

jueves 4 de junio de 2009

El universo cuántico se amplia: entrelazamiento entre osciladores mecánicos.


Los resultados presentados hoy en Nature por un grupo de físicos del NIST (Instituto Nacional de Estándares y Tecnología de los Estados Unidos) confirman experimentalmente que es posible conseguir un entrelazamiento cuántico entre osciladores mecánicos separados, lo que puede considerarse un desplazamiento de la frontera entre lo cuántico y lo clásico. Las técnicas desarrolladas pueden ser importantes para la construcción de procesadores cuánticos de información usando iones atómicos.

¿Dónde está el límite entre el mundo cuántico y el clásico? ¿En qué sistemas es necesario recurrir a la mecánica cuántica y en qué otros es suficiente hacer uso de la mecánica clásica? Nadie puede decirlo con certeza pero podemos intentar establecer un criterio que, aunque arbitrario, nos permita distinguir entre uno y otro. Podemos usar una propiedad típicamente cuántica, como el entrelazamiento, y aquellos sistemas que la presenten serán cuánticos y los que no, clásicos. Pues bien, si usamos este criterio, la noticia hoy es que el límite entre los dos mundos se ha desplazado.

El entrelazamiento cuántico es una de las propiedades de la mecánica cuántica que hicieron que a Einstein no le gustase la teoría. De hecho este fenómeno fue descrito en un artículo publicado en 1935 por el propio Einstein junto a Podolsky y Rosen como un intento de reducción al absurdo de las posiciones respecto a la teoría cuántica de Niels Bohr.

El entrelazamiento cuántico es un concepto nada intuitivo pero que está comprobado experimentalmente. Consiste en que los estados cuánticos de un objeto están íntimamente relacionados con los de otro objeto con el que está entrelazado, de tal manera que lo que le ocurra a uno tendrá su correlación en el otro, instantáneamente e independientemente de la distancia que los separe. Los objetos entrelazados no tienen necesariamente que tener las mismas propiedades, sino propiedades que estén ligadas de forma predecible.

¿Por qué no observamos el entrelazamiento cuántico en la naturaleza? Una posible respuesta es por nuestra incapacidad para aislar el sistema objeto de estudio del ambiente, lo que no deja de ser una limitación técnica. Otra es que exista un mecanismo aún por descubrir que impide la formación de estados entrelazados macroscópicos, lo que puede depender del número de constituyentes individuales del sistema o de los tipos de grados de libertad que se entrelazan. Esta última posibilidad es la que se ha explorado en el artículo que nos ocupa.

En la investigación que presentan John Jost y sus colaboradores dos osciladores mecánicos, constituidos cada uno por un par de iones (berilio y magnesio) que vibran (para visualizarlo: dos bolas conectadas por un muelle que se acercan y se alejan continuamente), aparecen entrelazados, que no sincronizados, vibrando al unísono aunque estén separados físicamente por 240 micras (un mundo a escala atómica, como comparación una tapa de yogur tiene 25 micras de espesor) y ubicados en zonas diferentes de una trampa de iones.

Los investigadores consiguieron reproducir el estado entrelazado un 57% de las veces, lo que ya es significativo, pero han identificado procedimientos para mejorar este porcentaje.

Estos osciladores mecánicos se pueden considerar clásicos o cuánticos en función de su energía y de otras propiedades de la vibración. Por lo tanto, estos resultados muestran la existencia de entrelazamiento cuántico en un grado de libertad que invade el mundo clásico.

Las técnicas empleadas también son todo un avance en sí mismas. Por primera vez se ha conseguido disponer distintos iones en un orden deseado, separándolos y reenfriándolos a la vez que se mantenía el entrelazamiento y realizando después más operaciones cuánticas con los iones. Todas estas técnicas pueden llevar a la generación de osciladores mecánicos mayores y, en concreto, la capacidad de control desarrollada puede ser muy útil para aumentar el tamaño de los sistemas de procesado de información cuántica que emplean iones atómicos atrapados.

Referencia:

Jost, J., Home, J., Amini, J., Hanneke, D., Ozeri, R., Langer, C., Bollinger, J., Leibfried, D., & Wineland, D. (2009). Entangled mechanical oscillators Nature, 459 (7247), 683-685 DOI: 10.1038/nature08006